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||ABSTRACT

The wireless brain–computer interface (BCI) system can become as powerful aids for people with disability (PWD), especially to help
them move independently. The BCI system captures the user’s brain activity and classifies into a signal to which a robot or a computer
device can respond. In this article, a review of various electrodes for capturing the electroencephalogram (EEG) signals, key techniques,
and their applications of wireless BCI headset along with future development issues proposed by many researchers have been discussed.
The central idea is a study on the brain rhythm related to the user’smovements for the control of mobile robots, humanoids, and robotic
wheelchair. The BCI system is capable of improving and enriching the lives of PWD and people with neuromuscular disorder and bringing
back the quality of free movement for PWD.
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||INTRODUCTION

In the last 10 years, brain–computer interface (BCI) is a field of
research that has been traversed. It facilitates the control of
machines through the study of classification of signals directly
obtained from the human brain. The BCI system translates the
brain signals into intelligent commands to control electronic
devices such as prosthetic limb, wheelchair, etc. In the early
days, BCI system applications were extensively used for those
diagnosed with a neurodegenerative disorder or quadriplegia
and Parkinson’s disease. These applications mainly focus on
upgrading the patient’s communication through thinking.[1]

The BCIs are now widely considered as one of the most
successful applications of the neuroscience, because they are
significantly improving the quality of the life of people of
disability (PWD) from severe motor disabilities, cerebral palsy,
and amyotrophic lateral sclerosis.[2] The BCI system provides a

direct contact path between the user’s brain and the external
devices such as computers and personal digital assistants
(PDAs). The activities of electrical signals can be obtained by
firing millions of neurons in the brain. When we think, millions
of neurons are fired together, and each cerebral state generates
different patterns of activity. These electrical activities can be
measured and recorded from the scalp of the human. Normally,
the electrical activities of the brain signal can be recorded by
invasive, partially invasive, or noninvasive methods. In invasive
method or partially invasive method, the electrodes are
implanted into or on the gray matter of the brain during
neurosurgical operations. In noninvasive method, the electro-
des are placed on the surface of the scalp. The brain signals
from electroencephalography (EEG), magnetoencephalogram
(MEG), blood-oxygen-level dependent (BOLD) signals, electro-
occulogram (EOG),[3] and oxyhemoglobin concentrations are
used as inputs for noninvasive BCIs.[4] Over the past two
decades, many paradigms for forming the EEG-based BCI
systems were tried out. Many classification methods are used
to classify the EEG signals by using biofeedback by interacting
with the stimuli of the different paradigms, which occur in EEG.
Each method has its own advantages and disadvantages. The
human brain can be divided into four structures: cerebellum,
cerebral cortex, brain stem, and hypothalamus. The cerebral
cortex consisting mainly cell bodies and capillaries is the gray
matter of the brain. The cerebral cortex has two hemispheres.
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The BCI system can be classified into two parts: (i) signal
acquisition (ii) translation part.[5] The signal acquisition part
consists of electrodes, analog-to-digital converter (ADC) circuit
for capturing the neurosignals, recording, and transmission. The
process of translating the signals can be done in computing
devices such as PDA and laptop by performing the signal
classification and algorithmic process on raw neurosignals.
According to the type of connection, the BCI can be classified
into two kinds: (i) wired and (ii) wireless BCI system. In the
earlier days, the conventional type of BCI was wired, and it
mainly focused on cursor control and speller applications,
which were developed for helping the PWD to do their work.
Even though, owing to the high cost and difficulty, BCI system
utilization was limited, but the technologies of NeuroSky and
Emotiv EPOC headset are extensively accepted because of being
relatively inexpensive and presenting reduced complexity.

The article is ordered as follows. Section II details the
electroencephalography. Section III explains the recent electro-
des for signal acquisition. Section IV describes the wireless BCI
system design, and Section V explains the signal features and
applications of BCIs.

||ELECTROENCEPHALOGRAPHY

The electrical activities of the brain can be recorded by using
EEG along the scalp. The function of EEG is that when we think,
millions of neurons are fired together to produce distinct
patterns of activity. These electrical activities can be measured
by electrodes located on the scalp of the brain. There are three
types of BCIs that are denoted as invasive, partially invasive,
and noninvasive BCIs.

In invasive BCI method, the signal capturing electrodes are
placed inside the gray matter of the human brain through
neurosurgery. The invasive method is used for the application
of repairing damaged sight and provides new functionality in
the life of PWD. The advantage of this method is that it provides
high quality signals, but it scars the tissue while surgery.
It causes the signal to become weaker.[6] A partially invasive
method captures the signal inside the skull rather than within
the gray matter. The electrodes are implanted in a thin plastic
pad and placed above the cortex region. It gives better
resolution signals. In noninvasive method, the small electrodes
are implanted on the surface of the scalp. Depending on the
placement of the electrode, several methods exist to study the
brain function. The methods are—EEG, near-infrared spectro-
scopy (NIRS), functional magnetic resonance imaging (fMRI),
electrocorticography (ECoG), nuclear magnetic resonance spec-
troscopy (NMRS), single-photon emission computed tomogra-
phy (SPECT), and event-related optical signal (EROS). Figure 1
shows the sections of the brain.

The implementation of the BCI model was done by using
two-level approach. The first part dealt with capturing the
signals and generate different control signals from the obtained
EEG signals. The next level consisted of commanding and
controlling the devices such as PDAs. Figure 2 shows the

placement of electrodes as stated by the 10–20 system and the
diagram of BCI system.

The BCI system was tested by two distinctive actions that
generated the EEG signals.

The EEG signals obtained from these two methods were used
in calculating the BCI. The controlling signals after the
calculations were used to control the robotic devices accordingly.

EEG refers to electrical activities recorded usually for
20–40 min. Using the EEG acquisition techniques, the event-
related potentials (ERPs) and evoked potentials (EP) informa-
tion were recorded. The related information was gathered from
the recorded signals by placing the electrodes in their
corresponding part of the brain.[7] The electrical activities of
the brain produce the signal with an amplitude generally below
a voltage of 100 mV.

||RECENT ELECTRODES FOR SIGNAL ACQUISITION

Recent EEG electrodes that are used to measure the brain
activities with low noise is the biggest challenge. In general, the
wireless BCI headset contains signal acquisition part for
preprocessing the signals and translation part for sending the
signals to the remote devices. Emotiv EPOC and Neurosky
technology headsets contain 14 single-channel sensors with
small, integrated circuit. The entire system is powered by a
battery source for processing and transmitting the signals.
In this, the captured signals are analyzed either using online
mode or offline mode on a computer device.

In a conventional BCI system, usually ring- and disc-shaped
passive electrodes are used to measure the signals that are
made of Ag/AgCl.[8] These systems have many disadvantages
that are extra treatments needed for recording the signals of
EEG, because the potential values are on several microvolts and,

Figure 1: Sections of the brain.
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thus, very noise sensitive. For better attachment and conduc-
tivity, hair arrangement and gels are needed. But these
preparation steps cause discomfort and is a time-consuming
process. Conductive gels may easily remove the moisture from
electrodes and lose their adhesion. Sometimes, the cable
vibrations may decrease the quality of the EEG signals.[9] For
these difficulties, passive electrodes are not feasible for
monitoring the EEG signals for a long time.

To overcome these, recently, dry electrodes are used. The dry
electrodes do not require any conductive gels and hair
arrangements for the installation process. Many brain-monitor-
ing wireless BCI systems have released them for research
purpose. They are the B-Alert X24, Quasar DSI 10/20 system, and
StarLab Enobio system. Each type has different channels and
applications such as mobile neurophysiological analysis, cogni-
tive workload, and neurofeedback. The researchers described
several types of electrode materials and their structures. The
various types of electrodes[8,10–12] are shown in Figure 3.

The impedance between the brain and the electrodes is
higher in dry sensors, and signal quality of the dry electrode is
not that much higher than the passive electrodes. To overcome
this, research has been done with active electrodes. The active
electrodes have an amplifier circuit located between the
electrode and signal acquisition front-end.[13] It provides high
input impedance, and the active circuit reduces the distortion of
the calculated signals. The advantage of the active electrodes is
that the quality of the signals can be in the desirable state, even
after the signal processing.[14]

||WIRELESS BCI SYSTEM DESIGN

Several papers have discussed the wireless BCI system block
diagram.[15,16] Figure 4 shows a typical wireless BCI system.
To enable the transmission of exact neurosignals, additional

signal conditioning is necessary. Physiological interference and
power line noise are present in capturing EEG signals. The
biopotential signals such as ECG, EMG, and EOG are useful. They
have higher amplitudes about 50 mV. At the same time, EEG
signal amplitude is approximately 10–100 mV. To obtain the
user’s intention carefully, the system needs to plan correctly to
avoid the interface from other components. The system is
classified into two parts. They are (i) signal acquisition and (ii)
translation part.

(i) acquisition Part: The acquisition part consists of two
subsystems namely analog and digital systems.

(a) An analog system:
It consists of filters and amplifier circuit that make reliable

and robust EEG signals from the captured signals. In the
amplification process, the wireless BCI system widely used
an operational amplifier and instrumentation amplifier.[17]

Figure 3: Various types of electrodes.

Figure 2: Placement of electrodes as stated by the 10–20 system and the diagram of BCI system.

2015 | Vol 5 | Issue 5 National Journal of Physiology, Pharmacy and Pharmacology352

Rani et al. Wireless brain–computer interface system using EEG signals



It provides robustness against different noise signals. The EEG
signal has a narrow bandwidth from 1 to 50 Hz.[18]Figure 5
shows the different types of the wireless BCI headset.[14,19–21]

(b) Digital system:
The digital system consists of a multiplexer, microprocessor,

ADC, and wireless transmission unit. A multiplexer is used to
access the multichannel. The measured analog EEG signals are
converted into digital signals for further processing using ADC.
The EEG analog signal transforms into digital signals with a
sampling frequency by using integrated circuit. Microprocessor
manages the entire system component and the protocol of
wireless transmission IEEE 802.15.4, and Bluetooth are used
for the transmission of measured EEG signals.

||SIGNAL FEATURES AND APPLICATION

After extracting the artifact from the signal, the signal is
processed for feature extraction to extract the characteristics of
the particular signals. Using a suitable software, the features are
extracted and used to generate the commands to direct the
robotic devices.

Several techniques are used to extract the particular
feature—linear discriminant analysis (LDA), support vector
machines (SVM), statistical classifiers, and artificial neural
network (ANN). Table 1 shows the characteristics of different
classifiers. Software tools are widely used to process the EEG
data, such as BCI 2000[22] and EEGLAB.[23]

Figure 5: Different types of the wireless BCI headset.

Figure 4: Typical wireless BCI system.
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Recently, several applications use wireless BCI systems. Liao
et al.[19] proposed the EEG-based archery game control.
It consists of three channels and dry EEG sensor. The function
of the archery game is that it measures the alpha rhythm value
from the user’s forehead. Another application of mobile BCI
using noncontact and dry EEG sensors has been developed by
Chi et al., who proposed graphical user interface (GUI)
smartphone phone application for the purpose of monitoring
and analyzing the signals. Dry and noncontact sensors were
used for capturing the EEG signals. They offer good signal

quality and easy installation.[13] Figure 6 shows the applications
of BCI system.[14,19,28,29] Lin et al. described the BCI system for
drowsiness detection. A real-time drowsiness algorithm has
been developed to detect the particular user drowsiness and
send the alert to a driver in a car by processing the rhythmic
values of theta and alpha of EEG signals.[30] Soogil et al.[31]

describe the recent wireless BCI-based smart-living environ-
ment auto-adjustment control system. To overcome the draw-
backs of bulky and expensive EEG devices and high quality
acquisition, the environment adjustment control system has

Figure 6: Applications of BCI system.

Table 1: Characteristics of different classifiers.

Classifier Mechanism Properties

Linear discrete analysis(LDA) On the basis of the set of features, the LDA classify

the specific object from a group of object

� Low computational cost

� Poor results on complex nonlinear data[24]

Support vector machines (SVM) By using a hyperplane, maximize the distance

between the different classes[25]
� Linear and nonlinear classifier

� High computational cost

Statistical classifiers Calculate the probability of each class and assigns

a new class with the highest probability[26]
� Nonlinear classifier

� Informative

Artificial neural network (ANN) By minimizing the error in training data,

find the nonlinear decision plane[27]
� Sensitive to overtraining

� High computational cost

� Nonlinear classifier
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been developed with the single-electrode EEG channel. The
captured cognitive state is used to control the electric home
appliances. Using this system, user’s can control devices such as
smartphones and smart TV.[30,31]

||FUTURE WORK AND CONCLUSION

The research and development of the wireless BCI system have
received a great deal of attention because it offers a mobility to
the elderly people to do their work without other interaction
and improves their quality of life. EEG system, different types of
electrodes, and various wireless headsets and their applications
are discussed in this review. However, recently, several
commercial companies and researchers have introduced the
wireless BCI headset for user experience. It provided good
signal processing and a useful real-time application at low cost.
The wireless BCI shall be further enhanced by making better
translation algorithms in the future for more efficient and
realistic control. An additional improvement needs to be taken
in BCI classifier for more effective performance of both time
response and accuracy to process the signals. The BCI system is
a helpful technology for the PWD to improve their indepen-
dence and mobility.
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